Mesenchymal Stem Cells Therapy in Lupus Nephritis

Lingyun Sun, PhD, MD

Department of Rheumatology and Immunology

Drum Tower Hospital, Nanjing University

Outline

- MSC function
- MSC in lupus
- MSC therapy in lupus nephritis(LN) model
- MSC therapy in human LN
- Mechanism of MSC treatment in lupus

Tyndall A, et al. Nat Rev Rheumatol 2014, 10: 117-124.

Mesenchymal stem cell function

Disfunction of lupus bone marrow MSC

- Grow more slowly
- Cytokines secretion↓
- Differential potential
- Cytoskeleton
- Gene expression profiles

Sun LY, et al. Stem Cells Dev, 2012; Che N, Sun L, et al, Clin Immunol, 2012

Osteogenic impairment of BMMSC in SLE

MSC+hydroxyapatite tricalcium phosphate(HA) as carrier and transplanted them into immunocompromised mice control

SLE

BMMSCs from SLE with decreased bone forming capacity, and expression of osteogenic gene Runx2 and osteocalcin

Sun LY, et al. Stem Cells, 2009

CCL2 mediated MSC inhibition on B cells

CCL2 modified MSCs had therapeutic effect on lupus

Che N, et al. J Immunol 2014; 193:5306-5314.

IgG

Lupus BM MSC fail to efficiently inhibit T cells proliferation

n=4, ***: p<0.001

Wang D, et al. Arthritis Rheumatol 2014; 66(8): 2234-2245.

Disfunction of lupus BMMSC

Apoptosis

- Senescence
- Fail to inhibit B cell
- Fail to modulate T cell

Sun LY, et al. Arthritis Rheum 2015, Stem Cells Dev, 2012; Clin Immunol, 2012

10

Inrease of serum Leptin and NAP in SLE

Chen HF, et al Arthritis Rhuem, 2015

Leptin and NAP acted via PI3k/Akt on senecence of MSC

Allo-MSC inhibit senescence of SLE MSCs

MSC homing in lupus kidney

CFSE labeled MSC IV

Kidney

BALB/c

MRL/lpr

MSC IV

Gu Z, et al. Lupus.2010

Autologous MSCT failed to cure lupus mice

Gu F, Gilkeson G, et al. Clin Immunol,2012

Autologous MSCT failed to cure lupus mice

Allogeneic MSCT is effective in lupus models

- Proteinuria ↓
- Autoimmune Ab \downarrow
- Serum albumin ↑
- Improved renal pathology
- Bone formation ↑

Sun LY, et al. Stem Cells, 2009, 27:1421-1432

Xenogeneic human bone marrow MSCT is effective in LN models

- Survival rate ↑
- o Proteinuria ↓
- Renal IC deposition ↓
- Renal VEGF, TGF- $\beta \downarrow$

Sun LY, et al. Cell Mol Immunol, 2008

Autologous MSCT failed to treat lupus patients

- BILAG and SLEDAI score had no change during 14 weeks visits
- Peripheral CD4+CD25+Foxp3+T cells 1
- No adverse event

Allogeneic MSCT for refractory SLE patients

- Bone marrow OR umbilical cord derived MSCs
- Clinical efficacy and safety profile

Sun L, et al. Arthritis Rheum 2010;62:2467-2475. Liang J, et al. Ann Rheum Dis 2010;6:1423-1429.

Allogenic MSCT in SLE

87 pts 4y followup

- > Survival 94%,
- » Mortality 6%
- ► CR+PR 60%
- > No side effect

Severe refractory SLE 2 y mortality 35%

Wang D, et al. Cell Transplant, 2012

Wang et al. Arthritis Research & Therapy 2014, 16:R79 http://arthritis-research.com/content/16/2/R79

RESEARCH ARTICLE

arthritis researchetherapy

Open Access

Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study

Dandan Wang¹, Jing Li², Yu Zhang³, Miaojia Zhang⁴, Jinyun Chen¹, Xia Li¹, Xiang Hu⁵, Shu Jiang⁵, Songtao Shi⁶ and Lingyun Sun^{1*}

江苏省重大成果转化项目(BA2009124)

脐带间充质干细胞技术体系转化在自身免疫病治疗中的应用 南京鼓楼医院,江苏省人民医院,苏北人民医院,江苏大学附属医院

Allo- MSCT induced disease remission in lupus Multi-center clinical study

Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy

ACR 2014, OP Clin Rheumatol, 2014

Patients baseline characteristics

Demographics	
Age (y)	31.6 (12-55)
Women: men (n)	74/7
Duration (month)	83.1 (6-264)
Renal BILAG [n (mean)]	81 (4.48±2.60)
Proteinuria [n, (g/24 hours)]	81 (2.74±1.20)
Serum creatinine [n (µmol/L)]	33 (196.27±99.01)
Serum albumin [n (g/dL)]	61 (2.58±0.47)
GFR [n (mL/min)]	27 (58.55±19.16)
Renal biopsy [n (%)]	13 (16.05)
SLEDAI score [n (mean)]	81 (13.11±4.20)
Cutaneous involvement [n (%)]	59 (72.84)
Musculoskeletal involvement [n (%)]	57 (70.37)
Hematologic involvement [n (%)]	36 (44.44)
Neuropsychiatric involvement [n (%)]	4 (4.94)
Baseline prednisolone [n (%)]	81 (100)
Hydroxychloroquine [n (%)]	43 (53.09)
Cyclophosphamide [n (%)]	66 (81.48)
Mycophenolate mofetil [n (%)]	19 (23.46)

Clinical outcome

- Overall survival: 95% (77/81)
- Complete remission: 30.9%(25/81)
- Correlated with baseline proteinuria (P = 0.003, OR = 0.517, 95%CI 0.336-0.794) and baseline serum creatinine (P = 0.047, OR = 0.471, 95%CI 0.224-0.990).

- Partial remission: 22.5% (18/80) at 3 mo, 27.3% (21/77) at 6 mo, 20.8% (16/77) at 12 mo
- \succ Correlated with baseline proteinuria (P = 0.039, OR = 0.762, 95%CI 0.588-0.986)
- Overall remission: 60.5% (49/81)
- Renal flare: 22.4% (11/49), correlated with creatinine (P = 0.003, OR = 1.773, 95%CI 1.213-2.591)

MSCT induced renal remission

Renal BILAG score

24-hour proteinuria

*: p < 0.05, **: p < 0.01, ***: p < 0.001

MSCT induced renal remission

Serum BUN

Serum creatinine

*: p < 0.05, **: p < 0.01, ***: p < 0.001

Dose of drugs tapered after MSCT

***: p < 0.001

Bone marrow VS. umbilical cord MSCT

Wang D, et al. Cell Transplant 2013; 22: 2267-2277.

With VS. without CYC precondition

Wang D, et al. Cell Transplant 2013; 22: 2267-2277.

Single VS. double MSCT

Allogenic MSC therapy for AD in Nanjing

725例

Bone marrow or umbilical cord

Once intravenous infusion

CYC precondition is not necessary

Repeated MSCT at 6 months

What's the mechanism?

MSC inhibit T cell proliferation, mediated by IDO

n=4, **: p<0.01

IFN-γ-induced IDO is required for MSC suppression of human SLE

n=7, ***: p<0.001, n.s. No significant difference

Wang D, et al. Arthritis Rheumatol 2014; 66(8): 2234-2245.

UC MSC maintain nTreg in lupus

ARTHRITIS & RHEUMATOLOGY Vol. 66, No. 8, August 2014, pp 2234–2245 DOI 10.1002/art.38674 © 2014, American College of Rheumatology

A CD8 T Cell/Indoleamine 2,3-Dioxygenase Axis Is Required for Mesenchymal Stem Cell Suppression of Human Systemic Lupus Erythematosus

Dandan Wang,¹ Xuebing Feng,¹ Lin Lu,¹ Joanne E. Konkel,² Huayong Zhang,¹ Zhiyong Chen,¹ Xia Li,¹ Xiang Gao,³ Liwei Lu,⁴ Songtao Shi,⁵ Wanjun Chen,² and Lingyun Sun¹

The mechanism of MSC inhibition on lupus B cells

Inhibit B cell proliferation Е control placebo MSCT **Inhibit B cell activation** \Box b Inhibit plasma cell lg M **Inhibit Ab production** В 对照组 治疗组 对照组 治疗组 А BAFF BAFF **Inhibit BAFF and BAFF-R** BAFF-R BAFF-R NMSC : Activated B cells Activated B cells 1:100 1:11:10BCMA BCMA 44.28 7.52 18.38 39.93 Counts TACI TACI 10⁰ 10¹ 10² 10³ $10^2 \quad 10^3$ 10⁰ 10^1 10^2 10^3 10¹ 10^{2} 10³ 10 10 antı-Brdu

Allogeneic MSC inhibit B cell activity to induce immunotolerance

Ma X, et al. Cell Transplant 2013; 22: 2279-90. Che N, et al. Clin Immunol 2012;274(1-2):46-53.

MSC enhanced macrophage phagocytosis

n=4, **: *p*<0.01

Deng W, et al. Clin Immunol,2015

Summary

- Autologous MSC were not appropriate for clinical therapy
- Allogeneic MSCT is safe and efficient for lupus patients
- 60%(CR+PR) effective rate of LN treated with allogeneic MSCT
- Immunotolerance induced via immunoregulation

Challenge

- Long time safety
- Long time efficacy
- Efficacy of MSC dose escalation different
- MSC maintenance
- Real mechanism in different AD
- Prospective RCT needed
- Long time followup
- MSC products

Acknowledgement

Drum Tower Hospital, Nanjing University Lingyun Sun, MD, PhD Huayong Zhang, MD, PhD Lin Lu, MD Xia Li, MD, PhD Xuebing Feng, MD, PhD Jun Liang, MD, PhD Kangxing Zhou, MD, PhD Bingzhu Hua, MD Hong Wang, MD Bujun Liu, MD

Nanjing University

NIDCR, NIH Wanjun Chen, MD

<u>CCMB, USC</u> Songtao Shi, DDS, PhD

Hongkong University Liwei Lu, PhD

MUSC Gary S. Gilkerson, MD, PhD Richard M. Silver, MD, PhD

Drum Tower Hospital